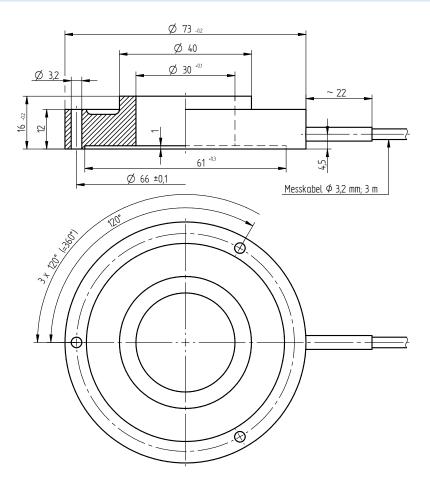


Druckkraftsensor K-2529 mit Nennkraft von 0,5 ... 20 kN


Leistungsmerkmale

- · Druckkraftsensor für Einpresskraftmessung
- · Kostengünstiger Sensor
- Aluminium
- · Hohe Langzeitstabilität
- Einfache Handhabung und Montage
- · Sonderausführungen auf Anfrage

Anwendungen

- Apparatebau
- Automobilindustrie
- · Mess- und Kontrolleinrichtungen
- Vollautomatisierte Fertigungszentren
- Werkzeugbau
- Sondermaschinenbau

Mechanische Abmessungen von K-2529 in mm

Artikel-Nr.	Nennkraft [kN]	Gewicht [kg]
109148	0,5	
109149	1	
109150	2	0,2
109151	5	
109152	10	
109153	20	

Anschlussbelegung

Elektrischer Anschluss			
Speisung (-)	Grün	•	
Speisung (+)	Braun	•	
Signal (+)	Gelb	•	
Signal (-)	Weiß	0	
Kontrollsignal (Option)	Grau	•	
Schirmung	Schirm		

Technische Daten nach VDI/VDE/DKD 2638

Druckkraftsensor K-2529 mit Durchgangsbohrung							
Nennkraft F _{nom}	kN	0,5	1	2	5	10	20
Genauigkeitsklasse	% F _{nom}	1					
Relative Spannweite in unveränderter Einbaustellung brg	% F _{nom}	0,3					
Relatives Kriechen	% F _{nom} /30 min	<±0,1					
Nennkennwert C _{nom}	mV/V	1,00 ±20°	%				
Ein-/Ausgangswiderstand R _e /R _a	Ω	350					
Isolationswiderstand R _{is}	Ω	>2*10 ⁹					
Nennbereich der Speisespannung B _{U, nom}	V	2 12					
Elektrischer Anschluss		Messkab	el, PURS, :	3 m mit fre	ien Litzen		
Referenztemperatur T _{ref}	°C	23					
Nenntemperaturbereich B _{T, nom}	°C	0 60					
Gebrauchstemperaturbereich B _{T, G}	°C	-10 70					
Lagerungstemperaturbereich B _{T, S}	°C	-30 95					
Temperatureinfluss auf das Nullsignal TK ₀	% F _{nom} /10 K	±0,2					
Temperatureinfluss auf den Kennwert TK _C	% F _{nom} /10 K	±0,2					
Maximale Gebrauchskraft F _G	% F _{nom}	130					
Grenzkraft F _L	% F _{nom}	150					
Bruchkraft F _B	% F _{nom}	>300					
Zulässige Schwingbeanspruchung F _{rb}	% F _{nom}	70					
Nennmessweg Snom	mm	<0,15					
Werkstoff		Aluminiur	n				
Schutzart		IP60					

Optionen

Artikel-Nr.	Bezeichnung	
100218	Kontrollsignal	100 % F _{nom}
100896	Nennkennwertabgleich	
42828	Erweiterter Temperaturbereich	-30 °C 100 °C
103954	Kalibrierung in kg oder t	
107592	6-Leitertechnik	

Kalibrierungen

Artikel-Nr.	Bezeichnung	
400628	Linearitätsdiagramm nach Werksnorm	25 % Stufen
400170	Linearitätsdiagramm nach Werksnorm	10% Stufen
400960	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	3 Stufen
400652	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	5 Stufen
400640	Werkskalibrierung nach DIN EN ISO 376 und DAkkS-DKD-R 3-3	8 Stufen
	DAkkS-Kalibrierung nach Norm auf Anfrage	

Zubehör

Kabel- und Eingangsstecker

Artikel-Nr.	Bezeichnung
10323	Kabelstecker KS6 (6-polig Serie 581) inkl. Sensoranbau
10320	Kabelstecker KSSH15 (15-polig) inkl. Sensoranbau
43418	Eingangsstecker ZA9612FS (ALMEMO) inkl. Sensoranbau und Steckerkalibrierung
49205	Eingangsstecker ZKD712FS (ALMEMO 202) inkl. Sensoranbau und Steckerkalibrierung

Messverstärker

Beispiele der geeigneten Messverstärker für den Druckkraftsensor K-2529:

Weitere geeignete Messverstärker finden Sie auf unserer Homepage unter www.lorenz-messtechnik.de.